Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Phytother Res ; 37(3): 1115-1135, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2283713

ABSTRACT

Caffeic acid phenethyl ester (CAPE), a main active component of propolis and a flavonoid, is one of the natural products that has attracted attention in recent years. CAPE, which has many properties such as anti-cancer, anti-inflammatory, antioxidant, antibacterial and anti-fungal, has shown many pharmacological potentials, including protective effects on multiple organs. Interestingly, molecular docking studies showed the possibility of binding of CAPE with replication enzyme. In addition, it was seen that in order to increase the binding security of the replication enzyme and CAPE, modifications can be made at three sites on the CAPE molecule, which leads to the possibility of the compound working more powerfully and usefully to prevent the proliferation of cancer cells and reduce its rate. Also, it was found that CAPE has an inhibitory effect against the main protease enzyme and may be effective in the treatment of SARS-CoV-2. This review covers in detail the importance of CAPE in alternative medicine, its pharmacological value, its potential as a cancer anti-proliferative agent, its dual role in radioprotection and radiosensitization, and its use against coronavirus disease 2019 (COVID-19).


Subject(s)
COVID-19 , Phenylethyl Alcohol , Humans , Molecular Docking Simulation , SARS-CoV-2 , Phenylethyl Alcohol/chemistry , Phenylethyl Alcohol/metabolism , Phenylethyl Alcohol/pharmacology , Caffeic Acids/chemistry , Anti-Inflammatory Agents/pharmacology , Free Radicals
2.
Advanced Materials Technologies ; 2023.
Article in English | Scopus | ID: covidwho-2233127

ABSTRACT

The ongoing COVID-19 pandemic has been a daunting challenge for healthcare systems worldwide. The World Health Organization has recommended various measures to reduce or limit the spread of the virus, one of which includes the use of face masks. This increase in their demand has provided a unique opportunity to improve the technology by offering, in addition to their inherent protection, therapeutic benefits. One such benefit involves inhaled nitric oxide (iNO) therapy. iNO has proven to be a beneficial therapeutic in patients with acute, hypoxemic respiratory failure and lung injury. Specifically, its potential application stems from its ability to rapidly increase oxygen partial pressure in arterial blood. However, iNO treatments generally require pressurized gas cylinders which are coupled with high costs and lack of portability. A face mask which can deliver therapeutic NO is developed using humidity-triggered NO-releasing nanoparticles. This platform can deliver a low dose of 2.1–2.5 ppm NO for 90 min in a sustained manner. Moreover, it can be stored for extended periods of time and can be easily transported due to its light weight. This NO mask has the potential to alleviate the strain that affects financially limited healthcare systems in developing regions. © 2023 The Authors. Advanced Materials Technologies published by Wiley-VCH GmbH.

3.
Mini Rev Med Chem ; 22(14): 1847-1875, 2022.
Article in English | MEDLINE | ID: covidwho-2029879

ABSTRACT

Widely consumed worldwide, Nigella sativa (NS) is a medicinal herb commonly used in various alternative medicine systems, such as Unani and Tibb, Ayurveda, and Siddha. Recommended for regular use in Tibb-e-Nabwi (Prophetic Medicine), NS is considered one of the most notable forms of healing medicine in Islamic literature. Thymoquinone (TQ), the main component of the essential oil of NS, has been reported to have many properties, such as antioxidant, anti-inflammatory, antiviral, and antineoplastic. Its chemical structure indicates antiviral potential against many viruses, including the hepatitis C virus, human immunodeficiency virus, and other coronavirus diseases. Interestingly, molecular docking studies have demonstrated that TQ can potentially inhibit the development of the coronavirus disease 2019 (COVID-19) by binding to the receptor site on the transmembrane serine protease 2 (the activator enzyme that attaches the virus to the cell). In addition, TQ has been shown to be effective against cancer cells due to its inhibitory effect by binding to the different regions of MDM2, according to the proposed molecular docking study. Detailed in this review is the origin of TQ, its significance in alternative medicine, pharmacological value, potential as a cancer antiproliferative agent, use against the coronavirus disease 2019 (COVID-19) and for treatment of other diseases.


Subject(s)
COVID-19 Drug Treatment , Nigella sativa , Antiviral Agents/pharmacology , Benzoquinones , Humans , Molecular Docking Simulation , Nigella sativa/chemistry , Oxidative Stress
4.
Drug Des Devel Ther ; 15: 1819-1833, 2021.
Article in English | MEDLINE | ID: covidwho-1225832

ABSTRACT

COVID-19 has caused a major global health crisis, as excessive inflammation, oxidation, and exaggerated immune response in some sufferers can lead to a condition known as cytokine storm, which may progress to acute respiratory distress syndrome (ARDs), which can be fatal. So far, few effective drugs have emerged to assist in the treatment of patients with COVID-19, though some herbal medicine candidates may assist in the fight against COVID-19 deaths. Thymoquinone (TQ), the main active ingredient of black seed oil, possesses antioxidant, anti-inflammatory, antiviral, antimicrobial, immunomodulatory and anticoagulant activities. TQ also increases the activity and number of cytokine suppressors, lymphocytes, natural killer cells, and macrophages, and it has demonstrated antiviral potential against a number of viruses, including murine cytomegalovirus, Epstein-Barr virus, hepatitis C virus, human immunodeficiency virus, and other coronaviruses. Recently, TQ has demonstrated notable antiviral activity against a SARSCoV-2 strain isolated from Egyptian patients and, interestingly, molecular docking studies have also shown that TQ could potentially inhibit COVID-19 development through binding to the receptor-binding domain on the spike and envelope proteins of SARS-CoV-2, which may hinder virus entry into the host cell and inhibit its ion channel and pore forming activity. Other studies have shown that TQ may have an inhibitory effect on SARS CoV2 proteases, which could diminish viral replication, and it has also demonstrated good antagonism to angiotensin-converting enzyme 2 receptors, allowing it to interfere with virus uptake into the host cell. Several studies have also noted its potential protective capability against numerous chronic diseases and conditions, including diabetes, hypertension, dyslipidemia, asthma, renal dysfunction and malignancy. TQ has recently been tested in clinical trials for the treatment of several different diseases, and this review thus aims to highlight the potential therapeutic effects of TQ in the context of the COVID-19 pandemic.


Subject(s)
Benzoquinones/therapeutic use , COVID-19 Drug Treatment , SARS-CoV-2 , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Benzoquinones/pharmacology , COVID-19/prevention & control , Comorbidity , Epigenesis, Genetic , Humans , Molecular Docking Simulation , SARS-CoV-2/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL